
LPP course 

Chess program
Katarzyna Obrycka, Marek Chruściel



Agenda

● Chess moves rules.
● Our approach to problem.
● Project design and work.
● Conclusions.



Chess moves rules

The initial board



Chess moves rules

Pawn moves



Chess moves rules

Knight moves



Chess moves rules

Rook moves



Chess moves rules

Bishop moves



Chess moves rules

Queen moves



Chess moves rules

King moves



Chess moves rules

Castling – special move



Chess moves rules

En passant, promotion



Our approach to problem

● Minimax algorithm for getting the best possible 
move. Standard algorithm, every chess program 
uses it in some way.

● “DAG” data structure that stores the game tree. 
Main reason why to remember the game tree is to 
compute and evaluate only once.

● Game tree holds game states in nodes and moves 
in edges.



Our approach to problem

● Evaluation function that uses piece counting as 
main evaluation method. Also pieces mobility and 
checks are considered. 

● Piece counting is the main method for evaluating 
the game state in every chess evaluation function.

● Our goal was to learn something about artificial 
intelligence in games. 



Project design and work

● “DAG” - class that stores the game tree and has 
the implementation of minimax algorithm.

● GameState – class that stores information about 
one particular game state. 
It's functionality: apply a move, compute checks,
and provide all information about the state.

● Move – structure that hold information about one 
move.

● Move generation – generates all possible moves 
from one state.



Project design and work

● EvaluationFunction – class that evaluates one 
GameState. As mentioned it uses the piece 
counting as main method.

● Xboard – provides linking form Xboard engine to 
our program.

● Util – helper functions.

● Test – some tests, used as a “sandbox”



Conclusions

● We made a chess program that plays chess in 
some decent way.

● The implementation is much harder than it sounds.
– The program must work fast
– Move generation is complex
– Game openings
– Pondering
– Check and mat computing

● This leads into a lot of code.
● Our architecture was not the best one.



Conclusions

● Students always have no time for making projects.

● Finding bugs is (nothing new) annoying.

● C++ is not the best choice until you know it well.


