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ABSTRACT

Almost every chess program makes use of a transposition table, typically imple-
mented as a large hash table. Even though this table is usually made as large as
possible, subject to memory constraints, collisions occur. Then a choice has to be
made which position to retain or to replace in the table, using some replacement
scheme. This article compares the performance of seven replacement schemes, as
a function of transposition-table size, on some chess middle-game positions. A
two-level table, using the number of nodes in the subtree searched as the deciding
criterion, performed best and is provisionally recommended.

1 Introduction

Chess programs analyze positions while building trees. However, a closer look shows that
the search space could better be explored by graphs, due to the fact that a position can be
reached by several orderings of moves. Such resultant positions are known as transpositions.

When encountering a position again, the size of the search tree can be reduced considerably
if the previous results for this position are still available. This information can be stored in
a large direct-access table, the transposition table (Greenblatt et al., 1967; Slate and Atkin,
1983). Relevant information for an entry in the transposition table includes the score of the
position, the best move and the depth of the subtree searched. Since we adhere to a-3 search
(Knuth and Moore, 1975), the score need not be a true value, but may be a lower or upper
bound. When using iterative deepening and minimal-window search, transposition tables may
significantly reduce the search effort (Ebeling, 1986; Berliner and Ebeling, 1989; Schaeffer,
1989; Hyatt et al., 1990), especially in endgame positions with few pieces on the board.

The literature on transposition tables is mainly tutorial in nature (for example, Marsland
(1986)), with only a few detailed discussions of performance (for example, Ebeling (1986),
Schaeffer (1989)). One frequently cited performance observation is that doubling the size
of the table reduces the size of the search tree. This is an obvious result, since the more
the information in the table, the greater the chance of finding a transposition. Performance
analyses of other aspects of transposition tables, such as which positions to replace, have not,
as far as we know, been published in the literature.

The most common implementation of a transposition table is a large hash table. Even though
this table is usually made as large as possible, subject to memory constraints, collisions
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(for which see Section 3) are bound to occur. When a collision occurs, a choice has to be
made whether to replace or to retain the position in the table. This choice is governed
by a replacement scheme. From the literature and from discussions with computer-chess
practitioners, it appears that the most common form of collision resolution is to prefer the
results of deeper searches over shallower ones. This has an intuitive appeal, but has not been
supported experimentally.

This article compares the performance of seven collision-resolution schemes on eighteen chess
middle-game positions. Perhaps surprisingly, we find that the traditional implementation
(one table position per entry) and the preference for retaining the results of deep searches
over shallow ones is not the best. We adopt a scheme first proposed by Ebeling (1986): a
two-level table. We examined both the depth of the subtree searched and the number of nodes
as the replacement criterion. In general, the latter performed best in the positions tested.

Details related to implementing transposition tables are described in Section 2. Section 3
identifies the problems that arise when using transposition tables. Relevant details of the
implementation of the chess program used in our experiments are given in Section 4. In
Section 5 our set of test positions is discussed. The design of the experiment is described in
Section 6. The results of our experiments are presented and compared with results in the
literature in Section 7. Finally, in Section 8 conclusions and proposals for future research are
given.

2 Implementing transposition tables

In the ideal case one would preserve every position encountered in a search process, together
with all its relevant information. Unfortunately, the memory then required exceeds the avail-
able capacity of most present-day computers. Therefore, in practice, a transposition table is
usually implemented as a hash table (Knuth, 1973). A position is converted to a number of
potentially sufficiently large size (the hash value) by using some hashing method. The most
popular method used by chess programmers is described in Zobrist (1970).

If the transposition table consists of 2™ entries, the n low-order bits of the hash value are used
as a hash index. The remaining bits (the key) are used to distinguish among different board
positions mapping onto the same hash index (i.e., the same entry in the transposition table).
Therefore, the total number of bits should be chosen sufficiently large.

Transposition tables are usually implemented as one table with a fixed number (traditionally
one) of table positions per entry (Slate and Atkin, 1983). Sometimes an overflow area is used
for handling a limited number of collisions.

An entry in a transposition table should at least contain the following information (Marsland,

1986; Hyatt et al., 1990):

Key %: The bits of the hash value more significant than those of the hash index. The key is
needed to distinguish among different board positions having the same hash index.

Marsland (1986) uses the term ‘lock’



Move : The best move in the position. This is the move which either caused a cutoff, or
obtained the highest score.

Score : The score of the best move in the position. Since we adhere to a-f3 search, the score
can be a true value, an upper bound or a lower bound.

Flag : A field containing information concerning the score, indicating whether it is a true
value, an upper bound or a lower bound.

Depth : The relative depth in the subtree searched. When doing an n-ply search and a
position is stored at ply m of the tree, the depth is n — m.

3 Errors from transposition tables

Implementing a transposition table as a hash table introduces two types of error, identified as
early as 1970 by Zobrist. The first type of error (called type 1 by Zobrist (1970)) is the more
important. Since the number of available hash values is much less than the total number
of positions in chess, it must happen that two different positions yield the same hash value.
This is a serious error, because when a type-1 error occurs, the information in this entry will
be used in the wrong position and, if so, will introduce search errors. Often it is possible to
detect this error by testing the move from the transposition table for legality in the position,
effectively lowering the error rate. If the move is illegal, then the table entry must concern
another position than the one being investigated. Note that if the move s legal, the positions
still may differ. The probability of the occurrence of type-1 errors can be lowered by increasing
the number of bits in the hash value.

The second type of error (called type 2, or clash by Zobrist (1970)), occurs when two different
board positions map onto the same entry in the transposition table, i.e., the same hash index.
This is commonly known as a collision (Knuth, 1973). When a collision occurs, a choice has
to be made which of the two positions involved should be preserved in the transposition table.
Such a choice is based on a replacement scheme. Several replacement schemes are discussed
in Subsection 6.1. The probability of the occurrence of collisions can be lowered by increasing
the number of bits in the hash index (i.e., the number of entries in the transposition table).

4 The structure of the implementation

The test program ALIBABA is a simple chess program, designed to be easily reproducible by
other researchers®. This reproducibility serves to promote a uniform platform for research.
The major components of ALIBABA constitute the remainder of this Section, viz. the search
engine (4.1), the move- ordering heuristics (4.2), the evaluation function (4.3) and the imple-
mentation of the transposition table (4.4).

® A full description of the program will be given in the forthcoming Ph.D. thesis of one of us (D.M.B.), who
can also be contacted for a free copy of the full C source code, which is available for public distribution.



4.1 The search engine

ALIBABA searches game trees using the a-f algorithm (Knuth and Moore, 1975). The likeli-
hood of desirable cutoffs is increased when the best move is examined first at interior nodes.
Therefore, iterative deepening (Scott, 1969) is applied, amounting to a full-width search to
increasing depths. Information gathered from previous iterations can be used to re-order
moves at interior nodes in the current iteration, increasing the likelihood of putting the best
move at the front of the current move list.

Another a-f enhancement implemented is the minimal window, based on the fact that it is
relatively easy to show that a move is worse than the best move found so far. The resultant
algorithm is known as iterative-deepening, minimal-window, principal-variation search (PVS;
for details, see Marsland (1986)).

Furthermore, ALIBABA uses aspiration search (for a description, see Marsland (1986)). At
the start of each new iteration, the upper bound and lower bound of the window are set to the
score resulting from the previous iteration plus and minus the value of a Pawn, respectively.
If the search fails (the score does not lie within the a-8 window), the window is adjusted to
either (—oo, score) when failing low, or (score, +00) when failing high.

When evaluating nodes they should be “relatively quiescent” (Shannon, 1950). Not all leaf
nodes are, so they must be investigated further by a quiescence search. In this search only
capturing moves and promotion moves are considered, except when the King is in check, then
all moves must be searched. We note that a quiescence search, when the player to move is
not in check, may be terminated early, viz. as soon as it becomes clear that all moves to be
generated will be disadvantageous.

No other search extensions are used in our transposition-table experiments in order to avoid
possible search anomalies.

4.2 The move-ordering heuristics

In any position, ALIBABA generates only legal moves, excluding pseudo-legal moves, such as
putting or leaving its own King in check. Since the ordering of moves is important for the
efficiency of the a-8 algorithm, the following ordering heuristics are implemented.

Refutation tables (Akl and Newborn, 1977). For every move in the root position, the
principal variation is stored. In the next iteration, moves out of these principal variations
are tried first.

History heuristic (Schaeffer, 1983; Schaeffer, 1989). A score for every legal move encoun-
tered in the search tree is maintained. Every time a move is found to be best in a
search, its score is adjusted by an amount proportional to the depth of the subtree
investigated. When ordering moves with this heuristic, moves with a higher score are
considered before moves with a lower score.



In ALIBABA, the moves are ordered in the following way. The first move to be considered is
the move from the refutation table. Then, if the position is found in the transposition table,
the transposition-table move is the next move to be considered. These moves are followed by
capture moves (the highest-valued piece to be captured first; if equal, then the lowest-valued
capturing piece first). Thereafter follow the promotion moves (ordered by promotion piece; the
highest-valued promotion piece first). The remaining moves are ordered according to their
descending history-heuristic scores. In addition to the move-ordering heuristics mentioned
above, which are applied immediately after move generation, the root moves are also ordered
during the iterative-deepening search processes.

4.3 The evaluation function

The evaluation function used for the transposition-table tests is simple. It consists of a
material part and a positional one. The material part counts the difference in material
between sides. The positional part is restricted to summing piece-square-table values. During
a game, for every type of piece a 64-square table is maintained. Each table contains positional
values for that piece on every square on the board. These piece-square tables are filled at the
beginning of each new search process. The values, in turn, are derived from the mobility of
pieces and the centre control. The technique of filling tables at the start of every new search
process is called preprocessing. The positional part of the evaluation function is updated
incrementally: whenever a move is investigated during the search process, the positional
value of the piece-fromSquare table entry is subtracted from it, and the value of the piece-
toSquare table entry is added to it. Finally, the evaluation function also serves to detect
draws by stalemate, by three-fold repetition and by the 50-move rule as well as checkmate.

4.4 The implementation of the transposition table

Whenever a move is investigated in the search the resulting position is looked up in the
transposition table. If the position is present, and the depth of the examined subtree is greater
than or equal to the depth still to be searched, the information in the table is considered
reliable and therefore used to update the window bounds (possibly causing a cutoff). The
transposition-table move is always used to order moves (see Subsection 4.2). In a-f search,
after a position is investigated to a certain depth, it is stored in the transposition table
together with the best move (i.e., the move which caused a cutoff, or the move with the
highest score), its score, the search depth and a flag, denoting whether the score was a true
value, a lower bound or an upper bound. During quiescence search, a position is never stored
in the transposition table.

The results of a transposition-table lookup are used at all nodes in the tree. If a leaf position
is present in the table, the transposition-table score is used for the evaluation. If the score was
a true value, this score is returned. Otherwise, the position is evaluated and if necessary the
evaluation value is adjusted according to the bound indicated by the flag in the transposition
table. Since the evaluation function is used in the quiescence search, the transposition table
is used in the quiescence search as well. Note, however, that, since entries are only retrieved
and not stored during quiescence search, their usefulness is limited during that phase.



In ArLiBABA, the transposition table is implemented as a linear array with one or two table
positions per entry. No overflow area is used. More details of the implementation of a
transposition table in plain a-8 search are given in Marsland (1986).

5 The test set

For various reasons, available sets of test positions (Reinfeld, 1958; Kopec and Bratko, 1982;
Nielsen, 1991; Lang and Smith, 1993) were unsatisfactory for our purpose. Instead, we have
opted to use a sequence of positions derived from an actual game, so as to test a diversity of
techniques.

One advantage of this is that the chosen positions will not be biased towards the tactical but
will automatically incorporate the positional aspects. Moreover, this choice also meets the
requirement that successive positions should be related, which is essential when investigating
the effects of clearing the transposition table between moves.

Specifically, we have chosen positions of the game Kasparov-Short from round 2 of the Euwe
memorial VSB tournament 1994 as our test set (see Appendix A)*. The opening phase is
omitted for obvious reasons. We shall only consider positions from move 15 onwards. Also,
we have concentrated on the use of transposition tables in the middle game to the exclusion
of the endgame, the latter defined as a position in which at least one side has fewer than 18
points of material®. We note that the present test terminates when the game is still a middle
game according to this definition. Our final restriction is that only Kasparov’s positions are
investigated®, resulting in 18 positions as a test set.

6 The design of the experiment

In this Section, we report the testing of seven replacement schemes, the impact of clearing
the transposition table between moves and the effect of changing the size of the table. We
use the number of nodes investigated during a search as a measure, including all nodes, i.e.,
interior nodes and leaf nodes.

6.1 Replacement schemes

Whenever a collision is detected, a choice has to be made whether to replace the existing
position in the transposition table. In this Section we examine seven different replacement
schemes, viz. DEEP, NEW, OLD, Bicl, BicALL, TwoDEEP, TWoBIG1. They are based on
five concepts, as numbered below.

*We are using only one game in order to establish which of our experiments could be usefully run on a
larger test set (e.g., all Kasparov games of the Euwe memorial VSB tournament 1994). Those results will be
incorporated in the forthcoming Ph.D. thesis of the first author.

®Pawn=1, Knight=3.25, Bishop=3.25, Rook=5, Queen=9. Kings do not contribute.

6This could be interpreted as a bias in the test positions.



1. (DEEP)

The replacement scheme DEEP is traditional. It is based on the depths of the subtrees
examined for the positions involved. At a collision, the position with the deepest subtree
is preserved in the table (Marsland, 1986; Hyatt et al., 1990). The concept behind this
scheme is that a subtree searched to a greater depth usually contains more nodes than
a subtree searched to a shallower depth. Therefore, more time was invested in searching
the larger tree. Hence, storing this position in the transposition table potentially saves
more work than storing a position less deeply investigated.

2. (NEw)
The replacement scheme NEW always replaces any position in the table when a collision
occurs. This concept is based on the observation that most transpositions occur locally,
within small subtrees of the global search tree (Ebeling, 1986).

3. (Owp)
We have also tested the replacement scheme OrLp. With this scheme (the opposite of
the scheme NEW) a new position never replaces an existing position. This scheme has
only been included for the sake of completeness.

4. (Big1, BiGALL)

Sometimes a subtree contains many forcing moves. It also may be potentially well-
ordered (in which case many cutoffs have occurred). In such cases, the depth of the
search tree fails to be a good indicator of the amount of search already performed and
therefore potentially to be saved. It then may be attractive to select, for retention, the
position with the biggest subtree rather than the one with the deepest subtree, going by
number of nodes rather than by their depths. A drawback then is that the number of
nodes must be retained as part of each transposition- table entry, reducing the effective
number of entries possible for a given amount of storage.

This scheme can be implemented in two variations, say Big1l and BiIGALL. The former
counts a table position in a transposition table as a single node, the latter as N nodes,
where N is the number of board positions searched in order to obtain the information
of the table position stored.

5. (TwoDEEP, TwoBIG1)
Ebeling (1986) describes the use of a two-level transposition table. So does Schaeffer
(1994), combining in the implementation the schemes DEEP and NEw. Such a trans-
position table has two table positions per entry’. Upon a collision:

¢ if the new position has been searched to a depth greater than or equal to the depth
of the extant first-level-table position, the new position replaces the latter, whereas
the extant position is shifted to the second-level position;

e otherwise, the new position is stored in the second-level position.

Thus, the newest position is always stored, and the less important of the remaining two
positions (in terms of depth of search) is overwritten. We call this scheme TwWoDEEP.
We also tested the analogous combination of the schemes NEw and Big1 (further de-
noted as TwoBIG1).

"Ebeling (1986) implemented the two-level transposition table in a slightly different way.



We note that in all replacement schemes in our experiments the decision to overwrite an entry
does not depend on the type of the score (true value, lower bound or upper bound) of the
positions involved.

6.2 Time stamping

When playing a game, a choice must be made what to do with the positions stored in the
transposition table during the search from a previous position in the game. Successive posi-
tions in a chess game are related to one another, and it therefore may seem best to retain all
positions in the transposition table. However, these positions are subject to aging, and will
be of little use after a few moves in the game. Consequently, clearing the transposition table
between moves may also seem attractive, e.g., when the evaluation function between searches
is changed.

Instead of physically clearing entries in the transposition table, it may be preferable to time
stamp them after the completion of each move. A time-stamped position remains stored in the
table until a collision occurs, when it is unconditionally overwritten. While time stamped but
not overwritten, it will still be used for retrieving information. A position not time stamped
holds information more recent than any previous search.

6.3 Table sizes

Undoubtedly, many experiments have been conducted to test the effect of the transposition-
table size on the number of nodes investigated. In spite of this, there are few reports in
the literature. Ebeling (1986) states: “each doubling in the hash table size yields only a 7%
decrease in the search size.”

Schaeffer (1994) reported a 5% decrease in the number of nodes searched when doubling the
number of entries in the transposition table. It is remarkable that both authors arrive at effects
of the same order of magnitude in spite of employing different move-ordering techniques.

We have tested the effect of doubling the number of positions in the transposition tables by
conducting the experiments with eight different table sizes, viz. from 8K to 1024K positions®.

6.4 Experimental

To test the ideas mentioned, an experiment has been conducted that observed the performance
of every combination of the seven replacement schemes (with and without time stamping) and
the eight table sizes. As stated in Section 5, the tests have been conducted on 18 positions,
searching each position 3 to 7 ply; 8-ply searches have been performed for table sizes of 16K,
64K, 256K and 1024K, for a total of 11,088 observations. On one SUN 4 computer, this took
an aggregate of roughly 1300 hours.

8K positions is equal to 1024 positions.
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Figure 1: Effect of table size without time stamping, 7-ply searches.

The following trends seem to be evident in Figure 1. Any conclusions must be taken in the
context of the small data set (18 positions) and the statistical variability.

e As table size increases, the number of nodes searched tends to constancy. In other
words, at some point, possibly before 1024K in our case, no significant gains may be
hoped for by increasing table size. This is caused by the larger percentage of tree nodes
that can be retained in the transposition table: the probability of harmful collisions
(i-e., collisions that cost many nodes) then greatly decreases.

e As table size increases, the spread between replacement schemes shrinks. For table sizes
from 512K upwards, the spread is only around 3%, whereas the smallest practicable
size, 8K, suggests a spread of no less than 23% between the best (TwoB1G1) and worst
(NEw) scheme. This is a consequence of the argument above.

e The two-level-table schemes outperform those with one level only.

¢ Our data confirms Ebeling’s (1986) statement, based on 10 positions, that TwoDEEP
“reduces search times by 5 to 10% for middle game positions” when compared with
DEEP.
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as opposed to Figure 1 which represents clearing the table entries between searches, the
following trends seem to be evident.

o The shapes of all graphs are highly similar between the Figures 1 and 2.

e The relative order of merit of the replacement schemes seems to be invariant for time
stamping; whether one time stamps or clears the transposition tables between moves,
TwoBIG1 appears to have a persistent edge.

At first sight time stamping seems to have a slight edge. Further research is needed to
determine whether this improvement is significant. If so, it can be recommended since it only
requires one additional bit per table position and requires little additional computation.

When limiting ourselves to a 3-ply search the use of a transposition table with time stamping
is counterproductive in that it prolongs the search. The probable cause is an unfavourable
move ordering, caused by a poor best-move suggestion from the transposition table. However,
it is reassuring that the use of transposition tables is definitely advantageous at more realistic
search depths of over 3 ply. An example is displayed in Figure 3.

8 Conclusions and future research

On logical grounds, one is tempted to conclude that the number of nodes of a subtree is a
better estimate of the work performed (and therefore potentially to be saved) than the depth
of that subtree. The experiments support this logic.
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Taken at face value, the results favour a two-level scheme over any one- level scheme. If this

is true, it would follow that DEEP, the most widely used scheme, is not best.

It must be stressed that the results have validity only as an exploration of methods and that
the data on which they are based (18 consecutive positions from a single champion’s game)
may not be a statistically large enough sample. The first suggestion for further research
therefore must be a repetition of these experiments on a much larger set of data. For this
purpose, a uniform and portable platform is now available, in the form of ALIBABA.
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A The test positions

The test positions used for the experiments are the WTM positions from move 15 onwards.

Kasparov—Short

Euwe Memorial VSB tournament, Round 2, Amsterdam, 1994

1. e2—ed eT—e6 2. d2—-d4 d7-d5 3. /H\bl-c3 {HNg816 4. ed—eb Nf6-dT 5. 24 c7—ch 6. Hgl—13
Hb8—c6 7. &cl-e3 cbxd4 8. Nf3xd4d &f8-ch 9. Wdl-d2 0-0 10. 0-0-0 a7-a6 11. h2-h4
Nebxd4d 12. 4e3xd4 b7-bs 13. Ehl1-h3 b5-b4 14. {He3-ad s chbxd4 15. Wd2xd4 {716
16. Wd4xb4 f6xeb 17. Wh4-d6 Wd8—6 18. 45 Wf6-h6 19. bcl-bl Ef8xf5 20. Zh33
Hi5xf3 21. g2xf3 Wh6—6 22. 4f1-h3 dog8—1T 23. c2—c4 dbxcd 24. HNad—c3 Wic—eT7 25. Wd6—c6
Ha8-b8 26. {Ne3—ed NAT-b6 27. Hed—gh Hf7T—g8 28. Web—ed gT-g6 29. Wedxeb Zh8-bT
30. 2d1-d6 c4—c3 31. £h3xe6 & c8xeb 32. Edb6xe6 1-0

B Some results

A full set of our results is available upon request from the first author. Below, we present
a selection of extreme cases, viz. those without the use of a transposition table and those
with a transposition table of the maximal size investigated, 1024K. The latter is presented
without time stamping as well as with it. In the former case the transposition tables are
cleared between moves. All figures reported are number of nodes visited in thousands.

3ply 4ply 5ply 6ply 7ply 8ply
185 1,083 3,847 23,573 96,969 610,696

Table 1: Results without a transposition table.



scheme 3ply 4ply b5ply 6ply 7 ply 8 ply
TwoBicl | 194 897 2,791 12,591 40,161 191,687
TwoDEEP | 194 897 2,791 12,507 39,596 185,354

Bic1l 194 907 2,788 12,568 40,324 197,502
BIGALL 194 907 2,788 12,542 40,478 197,377
DEEP 194 899 2,816 13,206 40,916 196,826
NEW 194 899 2,816 12,702 39,634 214,693
OLD 194 931 2,798 12,897 40,116 202,986

Table 2: Results with a 1024K-positions transposition table without time stamping.

scheme 3ply 4ply b5ply 6ply 7 ply 8 ply
TwoBicgl | 191 915 2,738 12,296 38,062 180,187
TwoDEEP | 191 915 2,738 11,989 38,514 191,747

Bic1 191 914 2,764 12,327 38,357 197,978
BIGALL 191 914 2,792 11,822 39,985 197,573
DEEP 191 907 2,753 11,887 39,622 195,008
NEW 191 907 2,753 12,112 40,656 202,209
OLD 191 934 2,777 11,926 39,580 205,200

Table 3: Results with a 1024K-positions transposition table with time stamping.



