Transposition Tables in Computer Chess

Dennis M. Breuker and Jos W.H.M. Uiterwigk
Department of Computer Science
University of Limburg
P.O. Boz 616
6200 MD Maastricht, The Netherlands
{breuker,uiterwijk}@cs.rulimburg.nl

ABSTRACT

Search algorithms are used in many game-playing programs. To enhance the
strength of these programs additional heuristics and improvements are used. One
of these improvementsis the use of transposition tables. In these tables information
concerning a position investigated can be stored in order to re-use this informa-
tion when the same position is encountered again during the search process (a
transposition). Amongst the information a transposition-table entry contains is
the best move for that position and the score of that move. In order to estimate
their contributions we have done experiments separating the effects of using the
transposition move and the transposition value.

The transposition table is typically implemented as a large hash table. Even
though this table is usually made as large as possible, subject to memory con-
straints, collisions occur frequently. When a collision occurs, a choice has to be
made which position to store or keep in the table (using some replacement scheme).
A second topic of our research is to compare the performance of several replace-
ment schemes. The experiments are conducted on middle-game positions taken
from chess games.

Doubling the number of entries in the transposition table reduces the size of the
search tree. This is an obvious result, since the more information in the table, the
larger the chance that the information in the table can be re-used during search.
Part of our research then is to quantify how much the size of the search tree is
reduced when doubling the number of entries in the transposition table.

It is known that the benefits of doubling the number of entries decrease at large
table sizes. Therefore, it is interesting to examine other means of using much
memory than increasing the number of entries in the transposition table. In
particular, what additional information can be stored in a transposition-table
entry to speed up the search? Preliminary results are given and some suggestions
to be tested in the near future will be made.

1 Introduction

Board games are an essential part of how people use their spare time. Most of these games,
such as chess, are two-person, zero-sum games with perfect information (Von Neumann and
Morgenstern, 1944). In two-person games there are two adversary players who alternately
make a move, transforming a position into a new position. In zero-sum games the gain of
a player is equal to his opponent’s loss. For instance, in checkers, if a checker is captured,
the capturing player has won a checker, while his opponent has lost one. Perfect information
means that each player has complete information about the position and the choices available
to him. Thus, at each turn the rules of the game define both which moves are legal and what
effect each possible move will have, leaving no room for luck. This is in contrast with games
with imperfect information or luck, such as bridge or backgammon, respectively.

1.1 Games and Artificial Intelligence

One of the advantages of the domain of intelligent (board) games for Artificial-Intelligence
(AI) research is that it is well structured. These games have well-defined rules, and are
complex enough at the same time. For instance, a child can learn the rules of a game like
chess in a few days, but chess professionals still make mistakes because of the enormous
complexity of the game. In the fifties, Alan Turing and Claude Shannon, two pioneers in the
field of AI, proposed computer chess as a research domain in Al. The first sentence of Turing’s
(1950) article reads: “I propose to consider the question, “Can machines think?””. To answer
this question he formulated “the imitation game”, nowadays known as the Turing test. This
test requires a person (interviewer) to ask questions (through a terminal) to a machine and
a human. The interviewer does not know who is the machine and who is the human. If the
interviewer is not able to distinguish between the human and the machine, the machine is
said to be intelligent. Shannon (1950) wrote one of the first articles about computer chess.
In this article he collected ideas from several people and formalized them into the concept of
a chess program. His ideas are still used in today’s chess playing programs.

The purpose of research on computer chess is twofold. First, many useful techniques can be
developed, which also can be used in other domains. Second, by developing a chess-playing
program, we hopefully get more insight in the human thinking process. This is based on the
idea that chess can be seen as an intellectual game (because it requires non-trivial thinking).
Therefore, not only computer scientists, but also psychologists are interested in computer
chess. Newell and Simon wrote their own chess program (Newell et al., 1958) in order to get
more insight in the human way of reasoning. The models of human problem-solving abilities
they developed later (Newell and Simon, 1972) were mainly based on insights they obtained
during their research on computer chess.

In due time, it appeared that a chess program which searches all moves in every position
(the brute-force approach) played better than chess programs which used the human way of
playing chess (i.e., searching only a few moves at every position). Although the former type of
programs are able to think according to the Turing test, they do not give insight in the human
thinking process. Therefore, today, many people believe that computer-games research is not
any longer at the core of AL. We believe this to be not true, since it presently is being used

as a test bed for many new techniques under development, such as parallel programming
(Feldmann, 1993) and advanced new search methods using either little knowledge (proof-
number search (Breuker et al., 1994a)) or much knowledge (opponent-model search (Iida et al.,
1994)).

1.2 Games and search

When a program is searching for the best move in a position, a search tree is generated. A
node in the tree represents a position in the game, while a branch represents a move. Each
node is expanded by generating all successors of the position. If a node represents an end
position (as determined by the rules of the game), it needs not be expanded. In an end position
the rules of the game determine whether the result is a win, a draw, or a loss. We distinguish
two types of nodes in the tree: nodes with successors (¢nterior nodes), and nodes without
successors (terminal nodes). We note that the root node (or root for short), representing
the current board position, is a special case of an interior node, i.e., the only node without
predecessor. The direct successors of an interior node are termed the children of the node
(which in turn is termed parent of its children). A path from the root to a terminal node is
called a wvariation. The depth of a (sub)tree is often counted in plies. A ply can be viewed
as a half move (a move by one of the two players). The term ply was firstly introduced by
Samuel (1959).

In order to choose a move in a position a backtrack mechanism is invoked. It requires all
terminal nodes in the search tree to have a value assigned (the score of that node). This
score, representing the goodness of a position, is given by an evaluation function. The better
a position, the higher its score will be. We assume that the evaluation function also recognizes
end positions. The score of a won position is equal to +00, the score of a lost position is equal
to —oo, and the score of a drawn position is equal to 0. Assume that the person to move
in the root position is called MAX and his opponent is called MIN. It is obvious that Max
will choose a move that maximizes his score, while MIN will choose a move that minimizes
MaXx’s score (i.e., maximizes his own score). The minimaz algorithm (Von Neumann, 1928)
assigns a score to every interior node in a search tree according to this principle. For nodes
representing positions where MAX is to move, this score equals the maximum of the scores of
its children, whereas the minimum of the scores is taken when MIN is to move. The principal
vartation is a sequence of moves from the root to a terminal node that results in the highest
score for the root! (the minimax value of the search tree). The principal variation is based
on best play for both players (according to the evaluation function used).

We will exemplify the minimax algorithm with Figure 1. White nodes represent White-to-
move positions and black nodes represent Black-to-move positions. The values below the
nodes D, E, F, G and H denote evaluation-function scores. The values to the right of the
nodes A, B and C denote back-up values. All values are seen from White’s point of view.
Thus, White wants to maximize and Black wants to minimize the scores.

At node B, Black can choose between two moves, leading to positions D and E, with
evaluation-function scores of 6 and 7, respectively. Therefore, Black will choose the move

!There may be more than one such path.

Figure 1: A minimax search tree.

which leads to node D, and node B receives a back-up value of 6. The same reasoning holds
for node C, receiving a back-up value of 1. Therefore, at node A (the root node), White will
choose the move which leads to node B, and A receives a back-up score of 6. The principal
variation leads from node A via node B to node D, along which path all nodes have the value
of 6, the minimax value of this tree.

In many of today’s game-playing programs a modification of the minimax algorithm is used
to find the best move in a position. This algorithm is called the a-8 algorithm (Knuth and
Moore, 1975). It prunes many irrelevant branches and it therefore is able to search much
smaller trees than the minimax algorithm, while still warranted to yield the correct value and
move. As an example, in Figure 1 the a-8 algorithm would not consider nodes G and H,
being irrelevant for the value of node A.

2 Transposition tables

When a human is calculating what move to play, he often encounters the same position again
by a transposition. For instance, the position in Figure 2 can be reached via different move
orders: 1. ed Nf6 2. Nc3, and 1. Nc3 Nf6 2. e4.

Figure 2: A position that can be reached by different move orders (BTM).

If a transposition occurs, the human knows he has already looked at that position, and skips
further analysis of it.

The same reasoning is implemented in game-playing programs. When a position is examined,
the results are stored in a large table, the transposition table (Greenblatt et al., 1967; Slate
and Atkin, 1977). Relevant information for a position in the transposition table includes the
score of the position, the best move and the depth of the subtree searched. When a position
is encountered, it is looked up in the table. If the position is found there, the information
concerned can be used in the search process. In chess, transposition tables are especially useful
in positions without Pawns or with locked Pawns because more transpositions are bound to
occur in such positions.

As an example, consider problem no. 70 from Fine (1941), shown in Figure 3.

///%
éaz/// _

e

'y
2 2 C F

Figure 3: A position with locked Pawns (WTM).

The test program has searched this position without and with a transposition table for ap-
proximately two minutes. In the first case, the program reached a search depth of 13 plies
(i-e., 7 moves for White and 6 for Black), whereas in the second case, this depth was reached
in only two seconds, while in two minutes a search depth of 24 plies (i.e., 12 moves for White
and 12 for Black) was reached! The use of a transposition table completely accounts for this
result.

In the ideal case one would preserve every position encountered in a search process, together
with all its relevant information. Unfortunately, the memory then required exceeds the avail-
able capacity of most present-day computers. Therefore, in practice, a transposition table is
usually implemented as a hash table (Knuth, 1973). With hashing, a large set (all legal chess
positions) is projected onto a small set (the transposition table). The most popular method
used by chess programmers is described by Zobrist (1970).

The disadvantage of implementing a transposition table as a hash table is that two different
positions can be mapped onto the same entry in the transposition table. This is commonly
known as a collision (Knuth, 1973). When a collision occurs, a choice has to be made which
of the two positions involved should be preserved in the transposition table. Such a choice
is based on a replacement scheme. Several replacement schemes are discussed in Section 3.

Evidently, the probability of the occurrence of collisions can be lowered by increasing the
number of entries in the transposition table.

3 The experiments

The test set used for the experiments discussed in this article consists of 94 positions from
six grandmaster games. For more details on the test set, see Breuker et al. (1994b) and the
forthcoming Ph.D. thesis of the first author.

This article describes four experiments on transposition tables. The number of nodes inves-
tigated during a search is used as a measure, including all nodes, i.e., interior nodes and leaf
nodes.

As mentioned in Section 2 the best move and the score of the position are important parts
of the information stored in the transposition table. It is interesting to examine what part
of the information gives more benefit: the use of the best move or the use of the score. The
effects are examined seperately.

Since the number of examined positions usually is much larger than the number of entries in
the transposition table, collisions are bound to occur. When a collision occurs, a choice has
to be made which of the two positions involved should be stored in the table. This choice is
governed by a replacement scheme. Replacement schemes can be based on several concepts.
The following five replacement schemes are dicussed:

1. (DEEP)

The replacement scheme DEEP is traditional. It is based on the depths of the subtrees
examined for the positions involved. At a collision, the position with the deepest subtree
is preserved in the table (Marsland, 1986; Hyatt et al., 1990). The concept behind this
scheme is that for a subtree searched to a greater depth usually more time was invested
than for a subtree searched to a shallower depth. Hence, storing the former position in
the transposition table potentially saves more work than storing a position less deeply
investigated.

2. (Bia)
Sometimes the depth of the search tree fails to be a good indicator of the amount
of search already performed and therefore potentially to be saved. It then may be
attractive to select, for retention, the position with the biggest subtree rather than the
one with the deepest subtree, going by number of nodes rather than by their depths.

3. (NEw)
The replacement scheme NEW always replaces any position in the table when a collision
occurs. This concept is based on the observation that most transpositions occur locally,
within small subtrees of the global search tree (Ebeling, 1986).

4. (OLp)
We have also tested the replacement scheme OrLp. With this scheme (the opposite of

Nunber of nodes searched (in nillions)

8 &3

100
95
90
85
80
75
70
65
60
55

30

— " vithtt — U= " usett-vadueonly - - * - wusett-nove only — < wthout tt

the scheme NEW) a new position never replaces an existing position. This scheme has
1 only been included for the sake of completeness.

1 5. (TwoBIG)

Ebeling (1986) describes the use of a two-level transposition table. Such a transposition
table has two table positions per entry. One table position uses scheme NEwW, and the
+ . other uses scheme BiG.

;;;‘;;;;

|One frequently cited performa;lce observation is that doubling the size of thg table reduces -
the size of the search tree. This is an obvious result, since the more information in the table,
Ithe greater the chance of being able to re-use it and pruning the search tree. We did some
“experiments trying-to-quantify this effect.

| —_ — 0 —

. - o I
,lWays,mor' more computer memory is available. In what way can this 1 memory best
|be used? Since doubling the nfimber of entrie$in-a-transpositjon table tapers off with large

tables, there is perhaps a better way to use the additional memory. We did some experiments

on saving additional knowledge in a transposition-table entry. ‘ ‘

8 16 32 64 128 256 512
4 Results Tabl e size (in K positi ons)

This Section shows the results of the four experiments described in the previous Section. The
results will be illustrated using three graphs.

In the first graph (Figure 4), the results of the use of a transposition table are depicted. The
experiment has been performed on a set of 18 test positions taken from a middle-game.

Figure 4: The effect of the use of a transposition table, 7-ply searches.

Nurmber of nodes searched (in mllions)

210

200

190

180

170

160

150

140

130

120

T

A
rom this graph it is clear that the use of a transposition table is very nrofitable in terms of

mnber\oinodes searched compared to searching without a transposi —®—— TwoBi g ‘over,
the use of the yalue of a transposition is more important than the use S
N o ~ Bg

gure 5 the results of experiments with five replacement schemes g . _ , _ _ Deep rperi-
ent has been performed on all 94 test positions.
N — < New
* R \A
o — + - ad

Tabl e size (in K positions)

Figure 5: The effect of using different replacement schemes, 7-ply searches.

It is clear that a two-level transposition table is a good idea. Moreover, the scheme most
frequently used, scheme DEEP, is not the best scheme. For a more detailed description of this
experiment and the results, see Breuker et al. (1994b).

It is also evident that the shapes of the lines flatten with larger tables. It follows that not
much can be won from another doubling of the number of entries in the transposition table.
In the range of 8K to 128K, a doubling results in a reduction of number of nodes searched of
roughly 3%, whereas in the range of 128K to 1024K, it is less than 1%.

Instead of increasing the table size when more memory is available, it may be better to use
the additional memory by storing more information in a transposition-table entry. We have
tested the results of storing a 5-ply principal variation in an entry instead of only the best
move (a 1-ply principal variation). In Figure 6 the results of these experiments are depicted.
The experiment has been performed on a set of 18 test positions taken from a middle-game.

From this graph it follows that with a transposition table of 256K entries, storing a 5-ply
variation instead of a 1-ply variation wins roughly 3% which outperforms the 1% gain by
simply doubling the table size. More research is needed to substantiate this observation.

Nunber of nodes searched (in nillions)
8 B & & S 5

w
~

— ®— l-ply variation

— U= S5pyvariaion

16 32 64 128 256
Figure 6: The effectpglesgviang a Rply vasdption, 7-ply searches.

5 Conclusions and future research

In this article, we described four experiments concerning the use of a transposition table in a
board game. We have taken chess as the test domain. From the experiments it follows that
the use of a transposition table may save a great amount of work, where the value of the
transposition is more inportant than the best move in that position.

Further, a replacement scheme based on the number of nodes searched is a better scheme
than the traditional one, using the depth of the search as criterion.

The advantage of doubling the transposition-table size is about 3% and tapers off with larger
tables. Therefore, it is interesting to experiment with saving additional information in the
transposition table when more memory is available.

We have tested the effect of the use of a 5-ply principal variation in a transposition, instead of
only the best move. Preliminary results show that a 5-ply variation wins roughly 3%. More
experiments are needed to validate this result. For future research several other means of
using more memory will also be investigated.

Since it is known that a transposition table works very well in endgames, the results may differ
from the middle-game results. Therefore, for future research, it is interesting to investigate
the differences for middle-games and endgames for the same experiments.

References

[1]

[10]

[11]

[12]

[13]

Breuker D.M., Allis L.V., and Herik H.J. van den (1994a). How to Mate: Applying
Proof-Number Search. Advances in Computer Chess 7 (eds. H.J. van den Herik, I.S.
Herschberg, and J.W .H.M. Uiterwijk), pp. 261-272. University of Limburg, Maastricht,
The Netherlands.

Breuker D.M., Uiterwijk J.W.H.M., and Herik H.J. van den (1994b). Replacement
Schemes for Transposition Tables. ICCA Journal, Vol. 17, No. 4, pp. 183-193.

Ebeling C. (1986). All the Right Moves: A VLSI Architecture for Chess. Ph.D. thesis,
Carnegie-Mellon University, Pittsburgh, Pennsylvania.

Feldmann R. (1993). Game Tree Search on Massively Parallel Systems. Ph.D. thesis,
University of Paderborn.

Fine R. (1941). Basic Chess Endings. David McKay Company, New York.

Greenblatt R.D., Eastlake D.E., and Crocker S.D. (1967). The Greenblatt Chess
Program. Proceedings of the AFIPS Fall Joint Computer Conference 31, pp. 801-810.
Reprinted (1988) in Computer Chess Compendium (ed. D.N.L. Levy), pp. 56-66. B.T.
Batsford Ltd, London.

Hyatt R.M., Gower A.E., and Nelson H.L. (1990). Cray Blitz. Computers, Chess, and
Cognition (eds. T.A. Marsland and J. Schaeffer), pp. 111-130. Springer- Verlag, New
York.

Iida H., Uiterwijk J.W.H.M., and Herik H.J. van den (1994). Thoughts on the Appli-
cation of Opponent-Model Search. Advances in Computer Chess 7 (eds. H.J. van den
Herik, I1.S. Herschberg, and J.W.H.M. Uiterwijk), pp. 61-78. University of Limburg,
Maastricht, The Netherlands.

Knuth D.E. and Moore R.W. (1975). An Analysis of Alpha-Beta Pruning. Artificial
Intelligence, Vol. 6, No. 4, pp. 293-326.

Knuth D.E. (1973). The Art of Computer Programming. Volume 3: Sorting and
Searching. Addison-Wesley Publishing Company, Reading, Massachusetts.

Marsland T.A. (1986). A Review of Game-Tree Pruning. ICCA Journal, Vol. 9, No. 1,
pp. 3-19.

Newell A. and Simon H.A. (1972). Human Problem Solving. Prentice-Hall, Inc.,
Englewood Cliffs, NY.

Newell A., Shaw J.C., and Simon H.A. (1958). Chess-Playing Programs and the
Problem of Complexity. IBM Journal of Research and Development, Vol. 2, pp. 320-
335. Reprinted (1988) in Computer Games I (ed. D.N.L. Levy), pp. 89-115. Springer
Verlag, New York.

10

[14]

Samuel A.L. (1959). Some Studies in Machine Learning using the Game of Checkers.
IBM Journal of Research and Development, Vol. 3, No. 3, pp. 210-229. Reprinted
(1963) in Computers and Thought (eds. E.A. Feigenbaum and J. Feldman), pp. 71-
105. McGraw-Hill Book Company, New York.

Shannon C.E. (1950). Programming a Computer for Playing Chess. Philosophical
Magaazine, Vol. 41, No. 7, pp. 256-275.

Slate J.D. and Atkin L.R. (1977). CHESS 4.5: The Northwestern University Chess
Program. Chess Skill in Man and Machine (ed. P.W. Frey), pp. 82-118. Springer-
Verlag, New York. Second Edition, 1983.

Von Neumann J. and Morgenstern O. (1944). Theory of Games and Economic Behav-
ior. Princeton University Press, Princeton. Second Edition, 1947.

Von Neumann J. (1928). Zur Theorie der Gesellschaftsspiele. Math. Ann., Vol. 100, pp.
295-320. Reprinted (1963) in John von Neumann Collected Works (ed. A.H. Taub),
vol. VL, pp. 1-26. Pergamon Press, Oxford.

Zobrist A.L. (1970). A New Hashing Method with Application for Game Playing.
Technical Report #88, Computer Science Department, The University of Wisconsin,
Madison, Wisconsin. Reprinted (1990) in ICCA Journal, Vol. 13, No. 2, pp. 69-73.

11

