Mate in 38:

applying proof-number search to chess

D.M. Breuker
L.V. Allis
H.J. van den Herik

ABSTRACT
Proof-number search (pn-search) has shown its merit in contributing to the solution
of Connect-Four, Qubic and Go-Moku.

In this contribution we show that pn-search is a highly capable searcher for mates in
chess. Pn-search achieves its results without using any heuristic chess knowledge. We
present the results of comparing the performances of pn-search and a number of other
mate searchers on a large number of problems.

Finally, we discuss how pn-search can be applied to general tactical searches.

%7% »
»

e =
/%/%

s

>
P
% % / a

/

_
s /
z/x/;% _
v &

Mate in 38, L.Ugren, 1967

1 Background

A major attraction of chess is the number of different skills necessary to play all stages of the
game at a high level.

To play the opening well, one needs to select an opening repertoire, study the lines in it,
understand the positions resulting from it, and constantly keep up to date with enhancements in-
troduced by top-level players. In the middle game, a deep understanding of the strategical features
of positions, as well as recognition and thorough calculation of the combinatorial opportunities
are necessary. The end-game again has its own rules. Some end-games are fully analyzed and only
require some experience. For others deep analysis, either performed at home or during a game,
constantly unveils chess secrets to the chess-playing community.

In short, different parts of the game require different skills. This is partly reflected in the
way chess programs are composed. To play the opening, large opening books are installed, and
constantly updated with the newest inventions of grandmaster play. For the end-game, databases,

such as Thompson (1991a, Thompson (1991b, Thompson (1991c¢), are installed. Most chess pro-
grams play the middle game using a single analyzing algorithm: «-f3 search (Knuth and Moore,
1975), although enhanced in several ways. This is somewhat surprisingly, since the middle game
requires calculation of tactical variations, as well as assessment of strategical positions.

In this contribution, we propose to use a specialized algorithm (proof-number search, Allis et al.
(1994Db)) to perform the tactical calculations.

First, we show that our pn-search implementation, PROVER, without using heuristic chess
knowledge and without transposition tables, is a better mate searcher than alternatives presented
in the literature (which do use heuristic evaluation functions and transposition tables). Second,
we describe how PROVER may be extended to perform a tactical analysis at each move of a game.
Anticipating our conclusions, we believe that a tactical searcher based on pn-search may be an
enhancement to most tournament chess programs.

Before continuing, it is important to stress one point. Proof-number search does not favour
a shortest mate over longer mates. It will report the first mate found, without checking for the
existence of shorter mates. In general the most forcing move sequence will be found, in which the
opponent has the least number of choices. Therefore, in a large number of problems presented in
this article, PROVER found a different mating sequence than the shortest solution. A discussion
on the implications of this property of pn-search can be found in section 5.2.

The course of this article is as follows. In section 2, a short description of pn-search is presented.
The architecture of PROVER (pn-search) and DUCK (a-{3 search) is described in section 3. In section
4 the performance of PROVER and DUCK on a large set of mating problems is compared. Also
presented in that section is a comparison of the performance of PROVER with mate searchers from
literature. The strengths and weaknesses of PROVER are discussed in section 5. Section 6 presents
ideas for future enhancements to PROVER, which should result in a general tactical searcher for
tournament chess programs. Conclusions are presented in section 7.

2 Proof-number search

In this section we present a short overview of proof-number search (pn-search). A detailed de-
scription of pn-search can be found in Allis et al. (1994b) and Allis (1994a).

Proof-number search is a best-first AND/OR-tree search algorithm (Allis, 1994a). It assumes
that evaluation of a node returns one of three values: true, false, or unknown. Throughout this
contribution we assume that true indicates that the player to movein the root position has achieved
his goal, while false indicates that his goal is unreachable. A tree is solved as soon as the value of
the root has been established. A tree is proven if its value has been established to be true, while
the tree is disproven if its value is determined to be false. Any node evaluating to unknown is an
internal node of the search tree, while nodes evaluating to win or loss are leaf nodes. Temporary
terminal nodes are either unevaluated nodes or unexpanded internal nodes. In our description of
pn-search we will assume that there are no unevaluated temporary terminal nodes. Thus, after
expanding a node, the newly created children are all instantly evaluated.

Like other best-first search algorithms, pn-search repeatedly selects a temporary terminal node,
expands it, evaluates all the children, and updates the tree with the information obtained from
the expansion and evaluations. Unlike most other best-first search algorithms, pn-search does not
use a heuristic evaluation function to determine a most-promising node. Instead, the shape of the
search tree, and the values of the terminal nodes determine which node to select next.

Generally, to prove a tree, a number of temporary terminal nodes of the current search tree
need to be proven. A set of temporary terminal nodes, which, if all proven, would prove the tree,
is called a proving set. Likewise, a set of temporary terminal nodes, which, if all disproven, would
disprove the tree, is called a disproving set. The size of the smallest proving set of the tree is a
lower bound for the number of node expansions necessary to prove the tree, while the size of the
smallest disproving set of the tree is a lower bound for the number of node expansions necessary
to disprove the tree.

In figure 1 an AND/OR-tree has been depicted. Associated with each node is the proof and

Figure 1: AND/OR-tree with proof and disproof numbers.

disproof number (in that order). Proven nodes (e.g., node K) have proof number 0 and disproof
number co. This follows from the fact that no expansions are needed to prove the node, as it is
already proven, and that no finite number of expansions could disprove the node. Analogously,
disproven nodes (e.g., node O) have proof number co and disproof number 0. Temporary terminal
nodes have proof and disproof number one, as expanding the node itself may be sufficient to solve
the node. Internal AND-nodes (depicted by circles) have as proof number the sum of the proof
numbers of their children, since to prove an AND-node, all children must be proven. The disproof
number of an AND-node equals the minimum of its childrens’ disproof numbers, since only one child
needs to be disproven to disprove the AND-node. Analogously, the proof number of an internal
oR-node (depicted by a square) equals the minimum of the proof numbers of its children, while
its disproof number equals the sum of the disproof numbers of its children.

The main assumption underlying pn-search is that it is generally better to first expand nodes
part of smallest proof and/or disproof sets, than selecting nodes which are only part of larger
proof and disproof sets. In other words, pn-search concentrates at each step on the potentially
least amount of work necessary to solve the tree.

The only remaining question reads, when to select a node from the smallest proof set of the
root, and when to select a node from the smallest disproof set. Surprisingly, we can always do
both at the same time. In Allis (1994a) it is proven that the intersection of any smallest proof
set and any smallest disproof set of the same node, is always non-empty. The nodes which are
element of both a smallest proof set and a smallest disproof set of the root are called most-proving
nodes. Thus, if after expansion of most-proving node J, it obtains value true, the proof number of
the root decreases by one, while if J obtains value false, the disproof number of the root decreases
by one. If the value of J remains unchanged, the newly created children may have their impact
on the proof and/or disproof number of J and its ancestors.

A most-proving node is selected in the tree, by selecting at AND-nodes a child with equal
disproof number, and at OR-nodes a child with equal proof number. By traversing from root to a
temporary terminal node, a most-proving node is determined.

The full proof-number search algorithm consists of repeatedly selecting a most-proving node
J, expanding J, and evaluating all of J’s children. Then, traversing the tree backwards, from J to
the root, the proof and disproof numbers are adjusted to the new situation. Detailed algorithms,
and enhancements to the standard version of pn-search can be found in Allis et al. (1994b) and

Allis (1994a).

3 prover and duck

In this section we describe two mate-searching programs. PROVER is an implementation of pn-
search, while DUCK is a conventional chess-program, created by the first author, based on a-8
search.

3.1 prover

PROVER is a pn-search implementation for chess, using the chess-specific routines of DUCK.
PROVER currently has as only goal searching for mate. In our description we distinguish be-
tween the aitacker and the defender. A position is proven if the defender can be mated, while
stalemate, repetition of positions and the 50-move rule are defined as disproven positions. PROVER
consists of pn-search, as described in section 2, enhanced with several techniques described in Allis
(1994a) to reduce time and memory requirements.

The most important enhancement, also described in Allis (1994a), is the initialization of proof
and disproof number at temporary terminal nodes. In the standard algorithm, proof and disproof
number are initialized at one each. Let us suppose that after expansion, all the n children evaluate
to value unknown. In that case the proof and disproof of the most-proving node are set to 1 and
n, for an OR-node, and n and 1 for an AND-node. To distinguish between temporary terminal
nodes, before expansion, we set the proof and disproof number of node J to 1 and n (or n and 1,
depending on the node type), where n is the number of legal moves in the position represented
by J. Experiments presented in Allis (1994a) show that the extra overhead induced by counting
the number of legal moves at each node, is more than compensated for by the value of the extra
information revealed to the node-selection process.

Worth mentioning is that PROVER does not use any chess-specific heuristic knowledge, such as
DUCK’s heuristic evaluation function and move sorting algorithm. Thus, moves are not ordered
by the move-generator in any way to ensure that the best-looking move is moved forward in the
list of moves.

3.2 duck

Duck is a conventional chess program, created by the first author. It is based on a variation of
a-(3 search, called Principle Variation Search (PVS) (Marsland, 1986). Several extension mecha-
nisms are used to postpone the horizon effect (Berliner, 1974). These extensions include singular
extensions (Anantharaman et al., 1989), check evasion extensions, and recapture extensions. The
search is performed using iterative deepening (Gillogly, 1972). To sort the generated moves the
history heuristic is used (Schaeffer, 1983). DUCK uses a transposition table with 1,000,000 en-
tries. Its evaluation function consists of a material part and a positional part. Furthermore, DUCK
recognizes mate, and draws by stalemate, repetition of positions and the 50-move rule.

In tournament mode, DUCK, when encountering mate, does not stop searching and tries to find
the shortest mate possible. However, when applying the program to the tests described in this
article, the search was terminated as soon as a mate was found.

4 Results

To compare the performance of PROVER with those of other mate searchers, we have selected a
large number of mate problems. Unfortunately, there is no standard set of mating problems in
use for these comparisons. Therefore, we have split our comparisons into two parts. First, we
present a comparison between PROVER and DUCK on a large set of mating problems, from various
sources (section 4.1). Second, we present a comparison between PROVER and results of other mate
searchers reported in literature (section 4.2).

4.1 Comparing prover with duck

For our experiments we have selected mating problems from three sources.

1. Win at Chess (Reinfeld, 1958).
The book contains 300 tactical problems, of which approximately 25% lead to mate. Some of
the problems which lead to mate are not identified as such, while in other cases a suggested
mate can be staved off by sacrificing material. Therefore, each of the 300 problems has been
checked by both PROVER and DUCK. Only problems for which a mating sequence was found
by at least one of the programs were included.

2. Chess Curiosities (Krabbé, 1985).
The book contains many curious, funny and remarkable compositions and examples from
tournament play. All problems which were listed as mate in 5 or more were selected.

3. Schachkombinationen (Colditz, 1983).
The book contains examples of tactical combinations, with explanations of the patterns
involved. All problems which were listed as mate in 5 or more were selected.

For the positions of all three sources, we have performed experiments in which both programs had
to solve the positions within 1,000,000 nodes. This limit was selected for two reasons.

e The calculation time (up to 5 minutes), corresponds roughly to tournament conditions.

e The search tree for pn-search must be kept in memory during the calculations. A tree of
1,000,000 nodes is close to the maximum achievable on the hardware used.

4.1.1 Win at Chess

We have applied both PROVER and DUCK to all 300 positions of Win at Chess. Both algorithms
were given a limit of 1,000,000 nodes per position.

In total, 66 positions were solved by both algorithms, 13 solved only by PROVER and 1 only
by DucK. The problem numbers in Win at Chess solved by the algorithms are listed below.

e Both algorithms.
1, 4, 5,9, 12, 14, 27, 35, 49, 50, 54, 55, 57, 60, 61, 64, 79, 84, 88, 97, 99, 102, 103, 104, 132,
134, 136, 139, 143, 154, 156, 158, 160, 161, 167, 172, 173, 177, 179, 184, 186, 188, 191, 197,
203, 211, 212, 215, 217, 219, 225, 244, 246, 251, 253, 260, 263, 266, 267, 278, 282, 283, 285,
290, 295, 298

e PROVER
6, 51, 138, 159, 168, 182, 218, 222, 241, 250, 252, 281, 293

e DUCK
105

In table 1 we present the results of PROVER and DUCK on the problems from Win at Chess. In
the first line of the table, we have listed the total number of nodes searched on the 66 positions
solved by both algorithms. The second line contains the average per position. The third line lists
the number of times one of the programs performed better on a position than the other program.
For the fourth and fifth line of the table, a position is selected where the factor difference in
nodes visited between the algorithms was a high as possible. The fourth line shows PROVER’s
best performance as compared to DUCK’s performance on the same position. The fifth line shows
DUCK’s best result as compared to PROVER. The sixth line shows the average number of nodes
searched by PROVER on the positions not solved within a million nodes by DucCK. The last line
shows number of nodes searched by DUCK on position 105, the only position not solved by PROVER.

PROVER DUCK
total nodes 696,109 4,461,174
average nodes 10,547 67,593
best algorithm 55 11
PROVER’s best 271 331,404
DUCK’s best 2,355 311
PROVER solved 305,912 | >1,000,000
DUCK solved >1,000,000 777,182

Table 1: Comparison on Win at Chess.

PROVER DUCK
total nodes 257,653 736,900
average nodes 36,807 105,271
best algorithm 6 1
PROVER’s best 296 244,122
DUCK’s best 173,480 158,523
PROVER solved 180,305 | >1,000,000
DUCK solved >1,000,000 930,899

Table 2: Comparison on Chess Curiosities.

4.1.2 Chess Curiosities

The book CHESS CURIOSITIES by Tim Krabbé is devoted to oddities in chess. These vary from
the latest castling move performed in a tournament game (at move 46), to mating problems with
curious themes. We have selected from the book all problems listed as mate in 5 or more moves.

The positions all correspond to diagrams in the book. Below we have listed for each problem
the algorithms by which it could be solved within 1,000,000 nodes.

e Both algorithms
35, 38, 197, 211, 212, 261, 317

e PROVER
61, 192, 194, 196, 198, 199, 206, 207, 208, 214, 215, 216, 218, 219, 333, 334

e DUCK
60

e Neither algorithm
40, 44, 209, 210, 217, 220

In table 2 we have listed the number of nodes visited by both algorithms on the positions of
Chess Curiosities. The table is built analogous to table 1.

Although at first sight, PROVER has a smaller advantage over DUCK than it had on the positions
of Win at Chess, this is not true. PROVER solved 16 positions which were not solved by DUCK,
while DUCK solved only one position not solved by PROVER. Some of the problems in Chess
Curiosities will serve as examples in describing the strengths and weaknesses of PROVER in section

5.

PROVER DUCK
total nodes 29,127 1,148,867
average nodes 3,640 143,608
best algorithm 8 0
PROVER’s best 490 641,571
DUCK’s best 25,461 30,819
PROVER solved 53,106 | >1,000,000

Table 3: Comparison on Schachkombinationen.

4.1.3 Schachkombinationen

Schachkombinationen contains 120 problems to test your tactical abilities. Among these, 9 mating
problems with a distance to mate of 5 or more are listed. We have applied PROVER and DUCK to
these 9 problems. All problems were solved by PROVER, while DUCK missed only one of the mates.

e Both algorithms
10, 42, 46, b5, 74, 86, 92, 99

e PROVER
119

As is shown in table 3, PROVER outperforms DUCK on these problems by a wide margin. The
table is built analogous to tables 1 and 2.

In average number of nodes, PROVER outperforms DUCK by a factor of almost 40. On the
positions where DUCK loses the least, PROVER gains only about 20%, while on PROVER’s best
position, it gains a factor of over 1300.

4.2 Comparing prover with the literature

In the literature we have found many articles dealing with tactical analyzers. In most cases, the
300 positions from Win at Chess are used as test problems. For the subdomain of mate searchers,
fewer articles are available. In most of these, only one or a few positions are shown on which
the program under discussion performed well. Only a small number of articles has systematically
compared performances of various mate searchers on a large number of positions.

In this section we compare the performance of PROVER with the results reported in the litera-
ture. First, we present a comparison with separate sources in the literature. Second, an overview
of the individual results is given.

4.2.1 Paradise

In Wilkins (1980), the knowledge-based, best-first tactical searcher PARADISE is described. As
an example of PARADISE’s achievements a mate in 10 is presented, which PARADISE solves in 109
nodes, in 20 minutes CPU time on a DEC KL-10. One of the reasons the position is difficult to solve
for full-width searchers, is the any as last defensive move, before black is mated. PROVER finds
a winning line of 18 moves in 24,738 nodes, or 7.5 CPU seconds on an IBM RS-6000. Although
so vastly different machines are difficult to compare, we may assume that the IBM is roughly
20-30 times faster than the DEC. This means that PROVER’s solution is 5-8 times faster than
PARADISE’s.

4.2.2 Computerschaak

In the Dutch computer-chess magazine Computerschaak, three commercial chess-computers have
been compared on 10 mating problems (Van Gisteren, 1992). The computers involved were the

PROVER | SUPER 9 | FinaL CC | MM5
1 0.04 16 70 187
2 0.03 5 1 5
3 0.04 3 10 1
4 0.08 19 250 210
5 0.81 525 - 4738
6 0.47 31 2 3
7 0.14 119 31 20
8 16.75 294 480 430
9 0.52 26 104 25
10 14.25 93 27 25
total 33.13 1131 - 5644

Table 4: Comparison with results from Computerschaak.

Super 9, 3 MHz, the Final Chess Card, 5 MHz, and the Mephisto MM5, 5 MHz. To convert the
solution times in nodes visited, we remark that PROVER searches approximately 4000 nodes/sec.

In table 4 we have listed for the 10 problems the results for PROVER, and the best result
achieved by the commercial programs. For problems 1, 4, 5 and 8 the Super 9 was best, for
problems 2 and 6 the Final Chess Card was best, while the MM5 was quickest on problems 3, 7,
9 and 10.

Table 4 shows that PROVER performs better than the commercial programs, on all 10 problems.
The gain factor ranges from 1.75 on problem 10, to almost 650 on problem 5. The gain factor on
the total over the 10 problems is 34.

4.2.3 Sam Lloyd’s problems

In 1985, three articles have appeared in consecutive issues of the ICCA Journal (Grottling, 1985;
Wiereyn, 1985b; Wiereyn, 1985a). In the first article, a set of 16 mating problems by Sam Lloyd
were presented, and the test results of 18 commercial computer programs. In the second and third
article, Wiereyn compares the results of his program with those presented in Grottling (1985). In
table 5, we compare the best results of all programs applied to the 16 mating problems to the
results of PROVER.

Table 5 shows that PROVER is outperformed 6 times out of 16. On problem 14 PROVER loses
by a factor of almost 8, while on problem 7 PROVER does not find the solution within 1,000,000
nodes. The total time count (discarding problem 7) is favourable to PROVER by a factor of over 2.

4.2.4 Touch

The chess program TOUCH, developed by Jos Uiterwijk, applies several kinds of selective extensions.
In a description of the 11th Dutch computer-chess championship, Uiterwijk cites five examples
of mates found by ToucH (Uiterwijk, 1991). We have compared PROVER’s performance with the
reported performance of TOUCH in table 6. Each line specifies the number of nodes searched by
each program.

PROVER outperformed TOUCH on all but one position. The gain factor of PROVER over TOUCH
ranges from 0.9 to approximately 7.

4.2.5 Bcp

In an article on mating sequences in the quiescence search, Beal reports the result on a mate-in-
10 position (Beal, 1984). The position has been checked by BcP with three different parameter
settings. BCP’s best result and Cray Blitz’s performance on the same position have been depicted

PROVER | ICCA Journal
1 0.16 0.15
2 0.07 0.25
3 0.06 0.22
4 0.70 4.35
5 5.81 4.43
6 20 1.02
7 - 3.18
8 52 19
9 0.60 12
10 18 86
11 14 19
12 1.72 134
13 0.10 98
14 84 11
15 2.63 147
16 86 95
total 286 631

Table 5: Comparison with results from the ICCA Journal

PROVER TOUCH
1 4,320 | 4,650
2 3,803 | 26,540
3 11,500 | 21,828
4 392 366
5 95,070 | 500,000
total | 115,175 | 553,384

Table 6: Comparison with the results of ToUCH.

PROVER BCP Cray Blitz
19,939 | 382,664 | 5,653,322

Table 7: Comparison with BcP and Cray Blitz.

PROVER | BCP
4 0.02 | 2.60
5 0.01 | 0.06
9 0.07 | 2.00
12 0.04 | 0.40
14 95.27 | 13.00
27 0.01 | 0.20
35 0.14 | 7.00
50 0.05 | 0.60
54 0.03 | 0.10
55 8.53 | 10.00

Table 8: Comparison with BCP on Win at Chess positions.

in table 7. The figures indicate the number of nodes visited. On this position, PROVER outperforms
BCP by a factor 19, while Cray Blitz loses a factor of more than 280.

In the same article, BCP’s performance on the first 10 mating positions of Win at Chess is
reported. We remark that for some reason positions 1, 6, 49 and 51 have been excluded, while
in each of these PROVER has found a forced mate. In table 8 we have compared the performance
of BCP and PROVER on the 10 positions reported. In the first column, the problem number from
Win at Chess is specified. In the other columns, figures depict CPU seconds. Except for problem
14, PROVER outperforms BCP.

4.2.6 Miscellaneous

In Hartmann and Kouwenhoven (1991) a mate in 6 is described, which is found by DAPPET in 24
seconds. PROVER finds the same mate in 3.2 seconds.

In Bij de Weg (1989) it is reported that The King announced a mate in 9 moves, at move 73
in its game against October. We have been informed that the calculations took approximately 10
minutes. PROVER found the same mate in 2.3 seconds.

In Anantharaman et al. (1989) it is reported that Chiptest found a mate in 18 moves in problem
213 of Win at Chess, in 65 seconds. Given Chiptest’s speed, this is the equivalent of some tens of
millions positions. Due to hardware restrictions, we have only been able to test PROVER on this
position up to 8 million nodes, in which the mate has not been found.

4.2.7 Overview

The comparison of PROVER’s performance with the examples in the literature presented in this
section, creates a steady image. PROVER generally performs better than other mate searchers,
but in some example positions, PROVER is outperformed.

In the next section we will analyze the strengths and weaknesses of PROVER illustrated by the
more extreme examples we have encountered here.

10

5 Strengths and weaknesses

5.1 Strengths

In this section we focus on three aspects of PROVER, which are advantageous compared with
other mate searchers. First we look at the use of chess knowledge, second at the complexity of
the algorithm, and third at the type of positions PROVER is likely to solve much quicker than
conventional mate searchers.

5.1.1 Chess knowledge

As stated in section 3.1, PROVER does not use any heuristic chess knowledge. All that is needed
is a move generator, and an evaluation function which is able to recognize mate, stalemate and
draws by repetition or the 50-move rule.

We would like to stress that quite unlike a-3 search, move ordering has almost no influence on
the performance of pn-search. This phenomenon can be easily explained from the way pn-search
builds its tree. At each step the child is select with smallest proof or disproof number (depending
on the node type). Only if two childs tie for first place, we select a node based on the move
ordering. Experiments with the standard move-ordering in DUCK showed that it has virtually no
influence on the number of nodes grown, while applying the sorting functions significantly slow
down the program.

Not using any chess knowledge has as advantage that within each chess program pn-search can
be incorporated, achieving the same results as PROVER, regardless of the evaluation function and
other heuristics applied.

5.1.2 Algorithm complexity

The complexity of implementing pn-search in a chess-playing program is comparable to imple-
menting «-F search. Our efforts to create PROVER within the already existing DUCK, took less
than half a day of programming and testing.

A detailed algorithmic description of pn-search can be found in Allis et al. (1994b, Allis
(1994a).

5.1.3 Mobility

Pn-search’s strategy may be described as checking first the variations in which the opponent has
the least mobility. Instead of applying the calculation of mobility to a single position, an overall
mobility for the search tree is calculated. The proof number of the root at any point in time
indicates the mobility left to the defender for escaping mate.

PROVER’s achievements seem to indicate that during a mate search, mobility is the single
most important factor. Clearly, chess heuristics such as material balance, positional advantages
lose most of their meaning when trying to force mate.

The depth of a mate is no longer a dominant factor in the size of the search tree to be grown.
As long as the mobility of the defender is restricted, pn-search will continue to search a variation,
regardless of the depth of the subtree. We present two example positions where this phenomenon
leads to the discovery of a deep mate.

The position in figure 2 can be found as diagram 194 in (Krabbé, 1985). Krabbé states:

“1. 2a84 Pal 2. 4b2+ Hbl 8. &xd4+ el If White could now play 4. &b2+ bl
5. &xeb+ etc., that would shorten the procedure enormously, but of course Black would escape:
4. ..., &d2. This necessitates the repetition of a seven move operation to bring the zwickmiihle
around: 4. 2e3+ <bdl 5. Td8+ <bel 6. 2d2+ Hdl 7. 2ba+ Pl 8. 2a3+ bl 9.
£b8+ hal 10. £b2+ &bl 11. L xeb+ el 12. Hfa+ bdl 13. Hd8+ el 14. &d2+
&dl 15. £bda+ Hel 16. 2a3+ bl 17. Eb8+ Lal 18. 2b2+ &bl 19. & xf6+ el
20. &gh+ Pdl 21. 2d8+ el 22. 2d2+ vdl 23. &bd+ del 24. Sad3+ &bl 25.
b8+ al 26. &b2+ &bl 27. &xgT+ Fel 28. Shé+ Ldl 29. 2d8+ el 30. &d2+

11

B
n
@;//
T
i/i/i
Ewl 0

»
@f%
/%

_

r:

Figure 2: Mate in 38

(L. Ugren).

>
%i/

&

.

\

%

L

&

=}

%

%

x

A

%

*/@ @E
sl
% 74

. -

v

%’%
|

Q

.
X

&
&

x

7 7
o
% %

\

=

Figure 3: Mate in 25 (J.-L. Seret).

cbd1 81. £b4+ el 82. a3+ bl 83. Eb8+ cal 34. S eT! and finally the idea is clear:
6 is the only safe safe square to threaten mate; on other squares the &\h4 or one of the pawns
could have thwarted that mate. Pawn d4 and pawn e5 had to go to open the diagonal, pawn {6
to gain access to g7, and pawn g7 to gain access to f6. After 34. £e7, mate cannot be staved off
for more than a few moves”

The remaining moves are:
Web 38. & xe5+ mate.

The position in figure 3 can be found as diagram 199 in (Krabbé, 1985). Krabbé states:

“Here, there are also two troublemakers and White disposes of an extended zwickmiihle like
the one in diagram 194 to silence them. 1. ¢¥b2 would mean mate in 2 if Black didn’t have
1. ..., a34. That pawn can be immediately removed with 1. &xad-+, but after 1. ..., <bel 2.
Hecd+ bl 3. 24 Fal! (3. ..., el 4. 215+ allows White to enter the solution at move 14)
4. &b3 Black has the nasty 4. ..., b5 5. cxb6 E b5+ etc. Therefore, in order to remove the pawn
a4, White must first remove the pawn b7. Hence 1. &e2+ chel 1...., &e2 2. BEcd+ bl 3.
£d3+ Fald. Zc2and 5. Za2 mate) 2. 2gd+ fl 3. 2h3+ gl 4. Hgd+ Hhl 5. Lg2+
Hel 6. 2xbT+! Hfl 7. 2a6+ Lel 8. Hed+ Hdl 9. 2e2+ el 10. £b5+! Hdl and
we are back in the diagram, but without the pawn b7 which means the pawn a4 meets its end
too. 11. &xad+ el 12. Bed+ bdl 13. 2+ Hel! Because if now 13. ..., gbal 14.
b3l 14. £f5+ &dl 15. Sgd+ Del 16. Ted+ Lfl 17. £h3+ gl 18, Zgd+ Hhl

34. ..., c1=% 385. 416+ Wh2 36. Zxb2 el1=W 37. Zb8+

12

Figure 4: Problem 6 of the ICCA Journal

19. g2+ gl 20. 2c6+! Hfl 21. 2b5+ el 22, Hed+ dl and there we are: back in
the diagram, but without those inconvenient pawns. 28. Hb2! Exch 24" 2ad+ Zc2+ 25.
Axc2+ mate.”

In the diagrams of figure 2 and 3, the mate found is also the intended solution to the problem.
As we will show in the next section, in some cases the opportunity to play forcing moves may lead
to excessively long detours from the optimal solution.

5.2 Weaknesses
5.2.1 Non-forcing moves

In many mating problems, the attacker delivers check on most of his moves, thus restricting the
options of the defender. In some cases, however, the attacker makes a non-forcing move, after
which almost any move by the defender leads to the same deciding attack. As the mobility of the
opponent is enlarged by such a non-forcing move, pn-search prefers to check first the variations in
which the defender is restricted. Thus, if the only solution requires a non-forcing move, pn-search
will perform relatively worse, than if a more forcing mate exists. This problem is also recognized
by Schaeffer (1989) when using conspiracy-number search as a tactical analyzer.

As a measure for the difficulty of a position caused by non-forcing moves, we count the number
of different variations within the solution. We present three example positions from section 4.2
where PROVER performed worse than the algorithms it was compared with. In each case, non-
forcing moves play a dominant role.

In the position of figure 4 the main line contains two non-forcing moves, to which all replies
must be checked, explaining the difficulties experienced by PROVER. In total, the solution consists
of 30 variations. In the position of figure 5 problems are even worse. PROVER finds a mate in 5
moves consisting of 697 different variations. Problem 14 of Win at Chessis a mate in 4, consisting
of 49 variations.

To evaluate this criterion of the number of variations, we look at three problems in which
PROVER performed much better than the algorithms it was compared with. On problem 5 of
Van Gisteren (1992), PROVER found a mate in 7 consisting of only 3 variations. Problem 13 of
Grottling (1985) was solved by an unnecessary long mate in 19, but consisted only of 1 variation,
explaining the 0.10 seconds CPU time needed. Finally, the mate in 10 position, solved by Cray
Blitz in over 5 million nodes, and by PROVER in less than 20 thousand, consisted of 13 variations.
We remark that the mate found by PROVER was 4 moves longer than the optimal solution.

We conclude that in positions where the solution requires non-forcing moves, thus increasing
the number of separate variations to consider, pn-search performs worse than in positions where

13

N R ET

////%x%
/// /M%W
/// \

/,/ %g%
/// /%
% \

Figure 5: Problem 14 of the ICCA Journal

%ﬂv/ /%%
arCaii"
%x///&%

et 1

Figure 6: Problem 14 of Win at Chess.

14

Figure 7: Problem 213 of Win at Chess.

only a small number of deep variations is to be found.

5.2.2 Transpositions

Transposition tables help to reduce the search tree in chess programs significantly. Unfortunately,
pn-search and transposition tables are difficult to combine. For an in-depth treatment of the
subject, see Schijf (1993). We are currently looking for a practical algorithm which allows trans-
positions to be handled within pn-search.

To see how transpositions slow down pn-search, let us suppose that a single variation occurs as
six separate subtrees within one variation. The number of variations to be proven thus increases
by a factor 6. The amount of search to be performed increases by a factor of far more than 6,
however. Since the subtree is judged to be 6 times as difficult as it really is, alternative subtrees are
investigated more deeply, until it is discovered that, despite the factor 6 extra work, the subtree
with transpositions is best.

Transpositions are the main reason why PROVER has not been able to solve the position in
Anantharaman et al. (1989), which we present in the diagram of figure 7.

It can be shown that in the solution tree for this problem, the position of the diagram in
figure 8 occurs six times. Since the distance to mate from that positions is still considerable, the
transpositions form an obstacle in the search which pn-search is unable to negotiate.

5.2.3 Mate length

In the position of figure 9, the shortest mate possible is mate in 5 moves: 1. Eh6! <bxh6 2.
Hxf6 HhT 3. gb Hh8 4. gb fxgb6 5. xgb+ mate. However, in the pn-search solution, after 1.
S xf64 g6 2. Ehl &h7 3. Exh7 xh7 4. Lxf7, white plays aimlessly with his bishop until he,
by accident, stumbles upon the correct configuration. Still, only 408 nodes were grown to find the
solution.

As described before, pn-search does not care about the depth of the search, only about the
number of options of the defender. In some cases pn-search finds mates in over 100 moves, which
actually are mates in less than ten moves. In the position of figure 10 (Howard, 1961), for example,
pn-search finds a mate in 114, in 1 second, while a mate in 4 is possible. This solution of 114
moves is entirely forced. White starts with the move 1. e6—e7, after which Black’s king plays back
and forth between h7 and g8, while white is playing around until he by accident stumbles on a
mate. Alternative initializations of proof numbers and disproof numbers, depending on the depth
in the search tree, can solve these problems.

15

.
N\ i%
Iy
0§

Do o
N\
\ %\\
Do

\
\ R
B\

@\ \\
- .

>
\\ &k il
Do

&
\&
N

\
o
Dg\
N\
\

L e

N

€
@
§§x
I
@

Figure 8: Six-fold transposition in problem 213 of Win at Chess.

%/%%%/ %gg%
%7 %7 O
v %5%%%

N

Figure 9: Problem 13 of the ICCA Journa L

%/%/%%
e e m
W e

%////
%///%

Figure 10: Problem 150 of The enjoyment of chess problems.

16

5.2.4 Memory

Pn-search has to keep the entire search tree in memory, for the node which is chosen to be expanded
can be anywhere in the tree. In the pn-search implementation in DUCK, the size of a node is 32
bytes. To grow a tree of 1,000,000 nodes (which takes four to five minutes in DUCK), 32 megabytes
of memory is needed.

The large trees are a disadvantage for commercial chess computers, which usually have a very
Limited amount of RAM. Thus, unfortunately, it will not be feasible for commercial chess programs
to use pn-search as a tactical analyzer.

6 Future enhancements

6.1 Mate length

As mentioned in section 5.2.3, pn-search often finds a deeper mate than the shortest mate possible.
To force pn-search to find a shallower mate, two solutions come to mind: (1) after pn-search has
found a mate, try to find a quicker mate by forbidding pn-search to grow the search tree to a
depth greater or equal than the solution found, using the already generated search tree as a guide
or (2) instead of initializing the proof number and disproof number in a temporary terminal node
at 1, they can be initialized at, for instance, the depth of the this node in the tree, thus making
it unattractive to search very deep.

6.2 Transpositions

As mentioned in section 5.2.2, pn-search and transposition tables are difficult to combine (Schijf,
1993). Therefore, we hope to solve this problem in the near future by finding a practical solution.

6.3 Tactical analyzer

In this article it has been shown that pn-search is a good mate searcher. It would be interesting
to apply pn-search not only to mate searching, but also to other tactical situations in chess. For
instance, it can be used as a tactical analyzer to look for a gain in material.

This is more difficult than searching for mate, since the stop condition (recognizing that a node
is proven or disproven) is not easy to formulate. One wants to stop searching in a node if the gain
value is stable, and evaluate that node as a win.

An example definition comes to mind when thinking of the stability of the gain value. The
gain value of a node can be defined as stable if the attacker is to move and has gained at least the
material which is expected.

6.4 Advisor to a-3 search

Since the definition of stable gain value is a heuristic one, it is possible that pn-search unjustly
thinks it has found a gain in material. To prevent this, the variation found by pn-search can be
checked by an «-(3 search. The variation can also be used to sort the moves in the «-3 search,
resulting in deeper searches than a standard full-width search, because of all additional cut-offs.

7 Conclusions

In this paper we presented a new search technique to search for mate in chess: proof-number
search. This technique uses no chess-specific knowledge other than mate, stalemate and rules for
deciding a draw.

It is shown that this technique almost always outperforms conventional search techniques. The
failure in some positions is due to the fact that non-forcing moves are needed in the main variation.

17

Proof-number search is very easy to implement: we implemented it into an existing chess
program in less than half a day.

The results of using proof-number search to search for mate are promising. In the future we
will investigate how this technique can be used as a tactical analyzer.

The only real drawback of proof-number search seems to be the lack of finding non-forcing
moves which lead to mate. This problem will be investigated in the near future.

References

[1] Allis L.V. (1994a). Games and Artificial Intelligence. Ph.D. Thesis, University of Limburg,
Maastricht, The Netherlands. To appear. (2, 3, 4, 11)

[2] Allis L.V., Van der Meulen M., and Van den Herik H.J. (1994b). Proof-Number Search.
Artificial Intelligence. To appear. (2, 3, 11)

[3] Anantharaman T.S., Campbell M.S., and Hsu F.-h. (1989). Singular Extensions: Adding
Selectivity to Brute-Force Searching. Artificial Intelligence, Vol. 43, No. 1, pp. 99-109. (4,
10, 15)

[4] Beal D.F (1984). Mating Sequences in the Quiescence Search. ICCA Journal, Vol. 7, No. 3,
pp. 133-137. (8)

[5] Berliner H.J. (1974). Chess as problem solving: The development of a tactics analyzer.
Ph.D. Thesis, Carnegy-Mellon University. (4)

[6] Bij de Weg M. (1989). Ed Schréder wint Nederlandse computertitel. Computerschaak,
Vol. 9, No. 6, pp. 250-255. (10)

[7] Colditz K. (1983). Lehr-, Ubungs- und Testbuch der Schach-kombinationen. Falken-Verlag,
GmbH, Niedernhausen. (5)

[8] Gillogly J.J. (1972). The Technology Chess Program. Artificial Intelligence, Vol. 3, pp.
145-163. (4)

[9] Grottling G. (1985). Problem-solving Ability Tested. ICCA Journal, Vol. 8, No. 2, pp.
107-110. (8, 13)

[10] Hartmann D. and Kouwenhoven P. (1991). Sundry Computer Chess Topics. Advances in
Computer Chess 6 (ed. D.F. Beal), pp. 61-72. Ellis Horwood, Chichester, England. (10)

[11] Howard K.S. (1961). The Enjoyment of Chess Problems. Dover Publications, Inc., New
York. (15)

[12] Knuth D.E. and Moore R.W. (1975). An Analysis of Alpha-Beta Pruning. Artificial
Intelligence, Vol. 6, No. 4, pp. 293-326. (2)

[13] Krabbé T. (1985). Chess Curiosities. George Allen and Unwin, Ltd, London. (5, 11, 12)

[14] Marsland T.A. (1986). A Review of Game-Tree Pruning. ICCA Journal, Vol. 9, No. 1, pp.
3-19. (4)

[15] Reinfeld F. (1958). Win at Chess. Dover Publications, Inc., New York. (5)
[16] Schaeffer J. (1983). The History Heuristic. ICCA Journal, Vol. 6, No. 3, pp. 16-19. (4)

[17] Schaeffer J. (1989). Conspiracy Numbers. Advances in Computer Chess 5 (ed. D.F. Beal),
pp. 199-217. North-Holland, Amsterdam. (13)

18

[18] Schijf M. (1993). Proof-Number Search and Transpositions. M.Sc. Thesis, University of
Leiden, The Netherlands. (15, 17)

[19] Thompson K. (1991a). Chess Endgames Vol. 1. ICCA Journal, Vol. ?, No. ?, pp. ?7-77
(2)

[20] Thompson K. (1991b). Chess Endgames Vol. 2. ICCA Journal, Vol. ?, No. ?, pp. ?7-7?
(2)

[21] '(I‘l;ompson K. (1991c). Chess Endgames Vol. 3. ICCA Journal, Vol. ?, No. ?, pp. ?7-77
2

[22] Uiterwijk J. (1991). Extensies: Touch’ sterkste wapen op het 1le NK Computerschaak.
Computerschaak, Vol. 11, No. 6, pp. 253-261. (8)

[23] Van Gisteren F. (1992). Testresultaten van de MM5 en de Final Chesscard 2. Computer-
schaak, Vol. 12, No. 2, pp. 77-81. (7, 13)

[24] Wiereyn P.H. (1985a). Inventive Problem Solving. ICCA Journal, Vol. 8, No. 4, pp.
230-234. (8)

[25] Wiereyn P.H. (1985b). Problem-solving Ability Tested II. ICCA Journal, Vol. 8, No. 3,
pp. 179-180. (8)

[26] Wilkins D.E. (1980). Using Patterns and Plans in Chess. Artificial Intelligence, Vol. 14,
pp. 165-203. (7)

19

